US 6,868,425 B1

17

neously. As with other functionality, while it would be
possible to design an API with explicit context; it would be
less convenient to use. Further, by having workspaces sup-
port most of the same interfaces as the repository session
object, programs written to the non-versioned API will work
against workspaces with no code changes.

CONCLUSION

Maintaining versions and workspaces in an object has
been described. As those of skill in the art will appreciate,
the embodiments of the invention provide advantages not
found in previous systems. For example, there is no need to
copy objects as new versions of an object are created. The
new versions are included in the range defined by the start
version and end version identifiers. It is only when a
property is actually updated that the property table repre-
senting the objects must be updated. Thus the embodiments
of the invention make more efficient use of both memory and
processor resources than previous systems.

Furthermore, the embodiments of the invention operate
with both version-aware and non-version-aware applica-
tions.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement which is calculated to
achieve the same purpose may be substituted for the specific
embodiments shown. This application is intended to cover
any adaptations or variations of the present invention.

For example, those of ordinary skill within the art will
appreciate that while maintaining versions and workspaces
has been described in terms of an object database or
repository, other means of storing persistent objects can be
readily substituted. In addition, the embodiments of the
invention have been described in terms of maintaining
versions and workspaces associated with objects. However,
the systems and methods described can be applied to any
data entity serving a similar purpose to objects in an object-
oriented environment. The terminology used in this appli-
cation is meant to include all of these environments.
Therefore, it is manifestly intended that this invention be
limited only by the following claims and equivalents
thereof.

We claim:

1. A computerized method for updating a version of an
object having a property, the method comprising:

receiving an updated value for the property;

setting an end version field in a first data structure to a

value representing a predecessor version of the object;
and

creating a second data structure by:

setting a start version field in the second data structure
to a value representing the successor version of the
object;

setting an end version field in the second data structure
object table to a value representing a most recent
version of the object; and

setting a property value field in the second data struc-
ture to the updated value for the property, wherein
the start version field and the end version field in the
second data structure define a range of versions
including the updated value for the property;

wherein version and property value fields of the data

structures record properties of the object and associated

versions of the object facilitating a recalling and gen-

erating of the object without requiring a copying of the

object.

10

15

20

35

40

45

55

65

18

2. The computerized method of claim 1, wherein the value
representing the most recent version is infinity.

3. The computerized method of claim 1, wherein the data
structure is a row in a database.

4. The computerized method of claim 1, wherein the
object is a COM (Component Object Model) object.

5. The method of claim 1, wherein a version of an object
having a property is updated and recorded without copying
the updated object.

6. The method of claim 1, wherein a version of an object
having a property is updated by copying only updated
properties and associated version identifiers and not the
updated object.

7. The method of claim 1, wherein the property is a
name-value pair and wherein the name refers to and per-
forms operations on the value.

8. The method of claim 1, wherein the method creates data
structure only for properties that have changed value and
does not copy the updated object.

9. The method of claim 1, wherein the method creates or
modifies property value fields only for properties that have
changed value and creates or modifies version fields for only
the versions including the properties that have changed
value.

10. A computer-readable medium having computer-
executable instructions for updating a version of an object
having a property, the method comprising:

receiving an updated value for the property;

setting an end version field in a first data structure to a

value representing a predecessor version of the object;
and

creating a second data structure by:

setting a start version field in the second data structure
to a value representing the successor version of the
object;

setting an end version field in the second data structure
to a value representing a most recent version of the
object; and

setting a property value field in the second data struc-
ture to the updated value for the property, wherein
the start version field and the end version field in the
second data structure define a range of versions
including the updated value for the property;

wherein version and property value fields of the data
structures record properties of the object and associated
versions of the object facilitating a recalling and gen-
erating of the object without requiring a copying of the
object.
11. The computer-readable medium of claim 10, wherein
the value representing the most recent value is infinity.
12. The computer-readable medium of claim 10, wherein
the object is a COM (Component Object Model) object.
13. A method for propagating a relationship of a prede-
cessor object to a successor object, said relationship having
an origin object and a destination object, the method com-
prising:
reading a propagation flag on the relationship; and

if the propagation flag is set then performing the tasks of:
determining if a previously added version of the des-
tination object has been added;
upon determining the previously added version has
been added:
setting an end version field in a first data structure
with a value representing a predecessor version of
the object;



